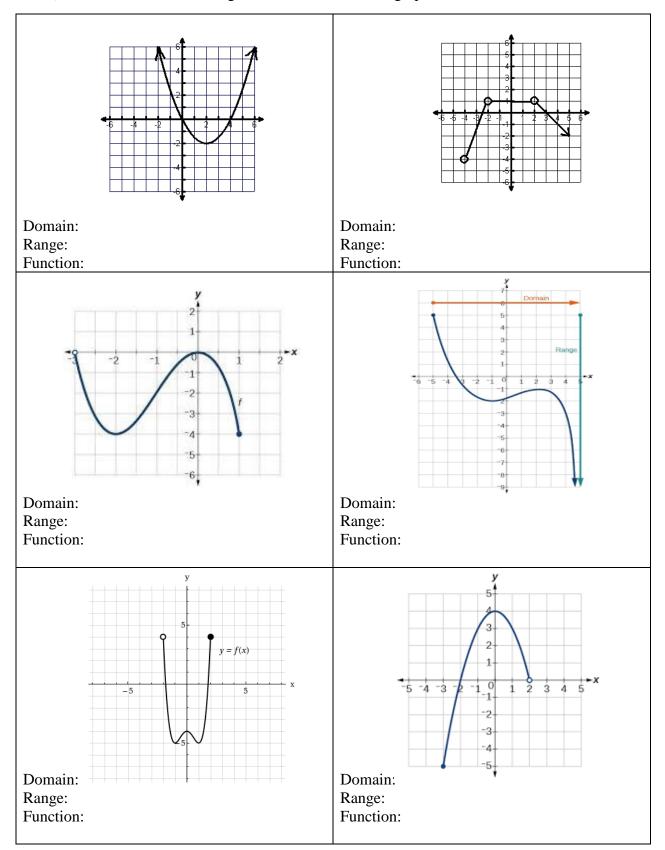
Jeddah Knowledge **International School**



MATHEMATICS SUMMER PACK GRADE 10 GOING TO GRADE 11

Name:	
Section:_	
_	

Functions

1) Find the domain and range. Decide whether it is a graph of a function.

Function Notation

2) Evaluate the following expressions given the functions below:

$$g(x) = -3x + 1$$

$$f(x) = x^2 + c$$

$$h(x) = \frac{12}{x}$$

$$g(x) = -3x + 1$$
 $f(x) = x^2 + 7$ $h(x) = \frac{12}{x}$ $j(x) = 2x + 9$

a.
$$g(10) =$$
 b. $f(3) =$ **c.** $h(-2) =$

b.
$$f(3) =$$

c.
$$h(-2) =$$

d.
$$i(7) =$$

e.
$$h(a)$$

d.
$$j(7) =$$
 e. $h(a)$ **f.** $g(b+c)$

h. Find x if
$$g(x) = 16$$

i. Find x if
$$h(x) = -2$$

h. Find *x* if
$$g(x) = 16$$
 i. Find *x* if $h(x) = -2$ **j.** Find *x* if $f(x) = 23$

If
$$f(x) = -3x + 8$$
, find $f(5)$.

If
$$h(x) = \frac{-2x+5}{4}$$
, find $h\left(\frac{3}{2}\right)$.

If
$$h(x) = \frac{-5x+2}{3}$$
, find $h(1)$.

Composite Functions

- 4) If $f(x) = x^2$ and g(x) = x 4 find:
- a) f(g(2))
- b) f(g(-3))
- c) g(f(2))
- d) f(g(3))
- e) g(f(-2))
- f) f(g(0.5))
- g) g(f(a))
- h) f(g(a-b))
- 5)

Let $f(x) = 2x^2 + 5x - 1$ and g(x) = 4x + 2. Find and simplify each function below. Show all work. f(g(-3))b. g(f(-5))

Let $f(x) = \frac{1}{5}x - 3$ and g(x) = -5x + 8. Find and simplify each function below. Show all work.

a.
$$f(g(2))$$

b.
$$g(g(-3))$$

Inverse Functions

6) Find the inverse of each function.

a)
$$f(x) = -5x + 11$$

b)
$$f(k) = 7k - 15$$

c)
$$f(m) = -4m$$

d)
$$g(t) = (5+t)^2$$

e)
$$h(d) = 7d$$

f)
$$m(x) = -7(x+4)^2$$

g) m(x) =
$$\frac{8+5x}{2}$$

h)
$$t(x) = \frac{5}{11} x + 2$$

Quadratic Functions

7) Solve the quadratic equations blow.

$$x^2 + 16x - 48 = 0$$

$$16x^2 + 5 = 40x$$

$$x^2 + 7x + 6 = 0$$

$$3x + x^2 - 1 = 0$$

$$x^2 + 13x = -42$$

$$2x^2 + x - 6 = 0$$

$$x^2 + 8x - 4 = 0$$

$$x^2 + x - 30 = 0$$

$$x^2 + 16 = 12x$$

$$5x^2 = 5x$$

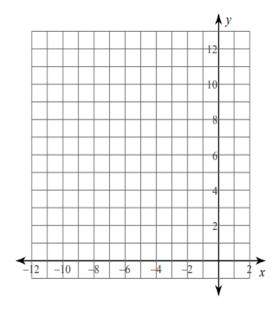
8) Use the quadratic formula to solve for x.

$$7x^2 + 10x + \frac{25}{7} = 0$$

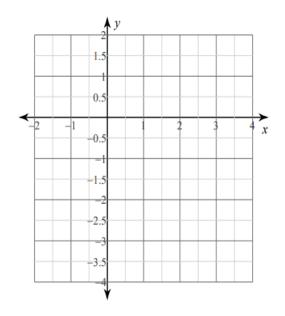
$$3x^2 + 3x + \frac{3}{4} = 0$$

$$4x^2 + 10x + \frac{25}{4} = 0$$

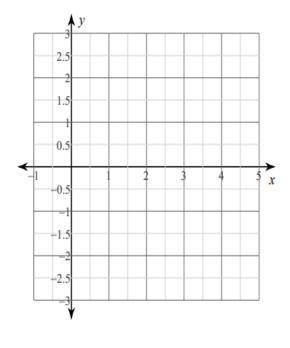
$$3x^2 + x + \frac{1}{12} = 0$$

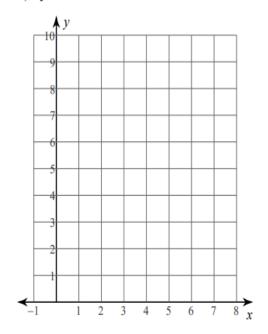

$$x(x+2) = 143$$

$$(x+1)(x+2) = 30$$


Working Area

9) Graph the following Quadratic functions:


1)
$$y = 3x^2$$


2)
$$y = -\frac{1}{2}x^2$$

3)
$$y = -x^2 + 2x + 1$$

4)
$$y = 2x^2 - 16x + 33$$

Algebraic Fractions:

1. Write each fraction in simplest form:

(a)
$$\frac{30}{66}$$

(b)
$$\frac{5x^4}{15x}$$

(c)
$$\frac{12xy^4}{18x^3y^2}$$

(a)
$$\frac{30}{66}$$
 (b) $\frac{5x^4}{15x}$ (c) $\frac{12xy^4}{18x^3y^2}$ (d) $\frac{5m^2n}{10m^3n^3}$ (e) $\frac{12a^4b^6}{2a^3b^4}$

(e)
$$\frac{12a^4b^6}{2a^3b^4}$$

Working Area:

1		
ſ		
1		
1		
ſ		
1		
ſ		
1		
ſ		
1		
ſ		
1		
1		
1		

2. Write each fraction in simplest form:

(a)
$$\frac{5x-15}{x^2-9}$$

(b)
$$\frac{a^2-5a+6}{3a^2-6a}$$

(c)
$$\frac{3x^2 + 14x - 5}{3x^2 + 2x - 1}$$

(d)
$$\frac{5p-15}{p^2-4}$$

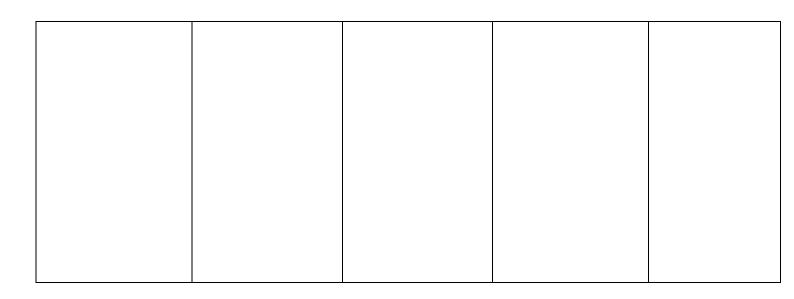
1.
$$\frac{3}{5x} - \frac{1}{10x}$$

1.
$$\frac{3}{5x} - \frac{1}{10x}$$
 2. $\frac{8}{5x} - \frac{4}{15x}$ 3. $\frac{1}{4x} + \frac{1}{5x}$

3.
$$\frac{1}{4x} + \frac{1}{5x}$$

4.
$$\frac{2}{x} + \frac{3}{2x}$$
 5. $\frac{1}{x^2} + \frac{1}{x}$ 6. $\frac{1}{xy} + \frac{1}{x}$ 7. $\frac{y}{x} - \frac{x}{y}$

5.
$$\frac{1}{x^2} + \frac{1}{x}$$


6.
$$\frac{1}{xy} + \frac{1}{x}$$

7.
$$\frac{y}{x} - \frac{x}{y}$$

8.
$$\frac{1}{xy} + \frac{1}{xz} + \frac{1}{yz}$$
 9. $\frac{1}{x} + \frac{1}{(x+1)}$ 10. $\frac{1}{x} - \frac{1}{(x+1)}$

9.
$$\frac{1}{x} + \frac{1}{(x+1)}$$

$$10.\frac{1}{x} - \frac{1}{(x+1)}$$

4. Multiply and simplify the following algebraic fractions:

a)
$$\frac{3}{s} \times \frac{s}{7}$$

b)
$$\frac{r^2}{s^2} \times \frac{s}{r}$$

c)
$$\frac{3}{x^2} \times \frac{x}{7}$$

a)
$$\frac{3}{s} \times \frac{s}{7}$$
 b) $\frac{r^2}{s^2} \times \frac{s}{r}$ c) $\frac{3}{x^2} \times \frac{x}{7}$ d) $\frac{12p^3}{q^2} \times \frac{q^5}{4p^4}$

Working Area.

Working Area:	<u></u>	

5. Divide and simplify the following algebraic fractions:

a)
$$\frac{3}{x} \div \frac{y}{7}$$

b)
$$\frac{y}{7} \div \frac{3}{x}$$

c)
$$\frac{x}{3} \div \frac{1}{3}$$

a)
$$\frac{3}{x} \div \frac{y}{7}$$
 b) $\frac{y}{7} \div \frac{3}{x}$ c) $\frac{x}{3} \div \frac{7}{y}$ d) $\frac{7}{y} \div \frac{x}{3}$

e)
$$\frac{a^3b^6c^4}{7} \div \frac{a^2b^6c^5}{x}$$
 f) $\frac{K_0}{5A} \div \frac{K_0}{5A}$ g) $5 \div \frac{z}{7}$ h) $\frac{x}{2y} \div 4$

$$\frac{K_0}{5A} \div \frac{K_0}{5A}$$

h)
$$\frac{x}{2y} \div 4$$

Working Area:	 	

Exponential Functions and Logarithmic Functions:

1. Write the following equations in exponential form:

(1)
$$\log_2 81 = 4$$

(2)
$$\log_7 7 = 1$$

(3)
$$\log_{\frac{1}{2}} \frac{1}{8} = 3$$

(4)
$$\log_3 1 = 0$$

(6)
$$\log_6 \frac{1}{36} = -2$$

(7)
$$\log_x y = z$$

$$(8) \quad \log_m n = \frac{1}{2}$$

O		
1		
1		

2. Write the following equalities in logarithmic form:

(1)
$$8^2 = 64$$

$$(2) \quad 10^3 = 10000$$

$$(3) \quad 4^{-2} = \frac{1}{16}$$

(1)
$$8^2 = 64$$
 (2) $10^3 = 10000$ (3) $4^{-2} = \frac{1}{16}$ (4) $3^{-4} = \frac{1}{81}$

(5)
$$\left(\frac{1}{2}\right)^{-5} = 32$$
 (6) $\left(\frac{1}{3}\right)^{-3} = 27$ (7) $x^{2z} = y$ (8) $\sqrt{x} = y$

(6)
$$\left(\frac{1}{3}\right)^{-3} = 27$$

$$(7) \quad x^{2z} = 1$$

(8)
$$\sqrt{x} = y$$

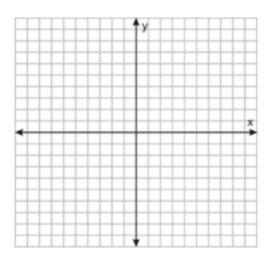
Working Area:

3. Express the following expressions:

Given that $\log 2 = x$, $\log 3 = y$ and $\log 7 = z$, express the following expressions in terms of x, y, and z.

- (1) $\log 12$ (2) $\log 200$ (3) $\log \frac{14}{3}$ (4) $\log 0.3$

4. Graph the following functions:


$$1. \ f(x) = 3^x$$

x			
У			

	↑ y
4	×

$$2. f(x) = Log_3 x$$

1				
	X			
	У			

Sequences:

1. State whether the given sequences are arithmetic or geometric sequences or neither:

a. 8, 16, 24, 32, 40...

b. 2, 5, 9, 14, 20... ... _____

c. 2, 4, 6, 8, 10... ... _____

d. 100, 80, 70, 65... ...

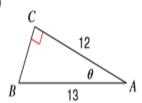
e. 31, 32, 33, 36... ... _____

2. Find the term indicated for each geometric sequence:

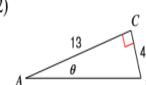
a. 1, 3, 9, (u_7)

b. 18, -6, 2, (*u*₅)

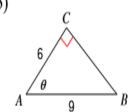
c. 2, -8, 32, (*u*₈)

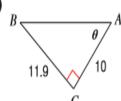

d. -6, -12, -24, ... (u_9)

Working Area:			
3.	Find the first four terms of the seque	ence with <i>nth</i> term:	
	a. $u_n = 8 \times 3^n$	b. $u_n = n (n + 1)$	
4. 5.		In u_n of the arithmetic sequence: 3, 6, 9, 12, u_n of the geometric sequence: 2, 4, 8, 16,	

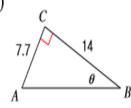

Trigonometry in Right Triangles

1- Find the measure of each angle indicated. Round to the nearest tenth.

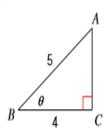

1)

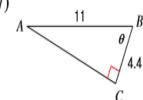


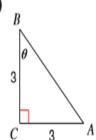
2)



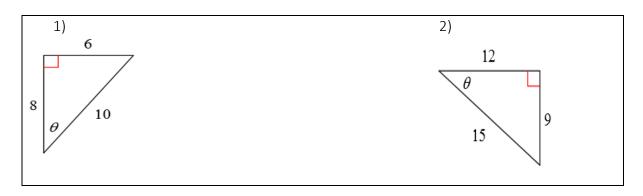
3)

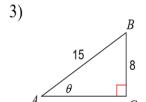


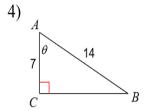


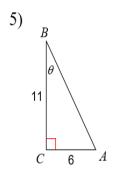

5)

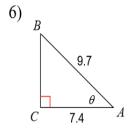
6)

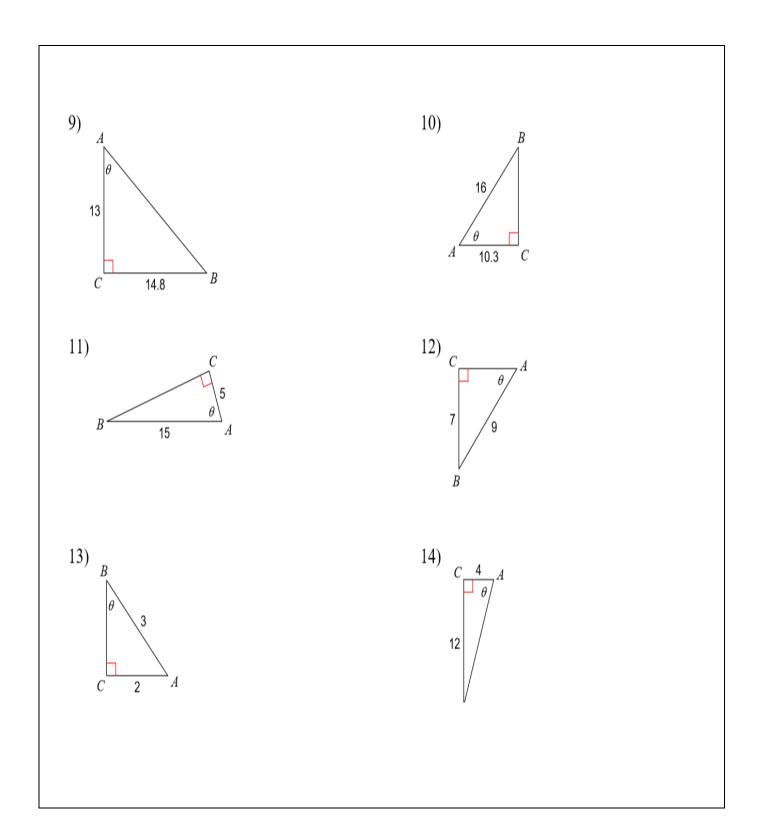


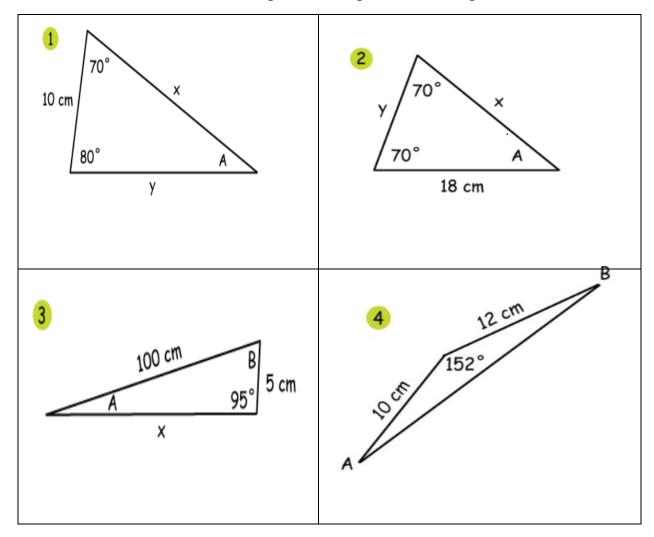



Working Area:		


2- Find the values of the three trigonometric functions for each triangle. Give exact answers.



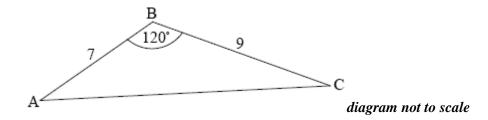

3- Find the measure of each angle indicated. Round to the nearest tenth.



Woking Area:			

4-	From a point 120 m horizontally from the base of a building, the angle of elevation to the top of the building is 34 ⁰ . Find the height of the building

<u>Trigonometry in Non-Right Triangles</u>


1- Find the measures of all missing sides and angles of these triangles:

Working Area:		

2-	Triangle ABC has $m < ABC = 48^{\circ}$, AB= 10cm, and AC =8cm. Show that $m < ACB$ has two possible sizes. Give each answer correct to 3 significant figures
3-	In triangle PQR, PQ is 10 cm, QR is 8 cm and angle PQR is acute. The area of the
	triangle is 20 cm ² . Find the size of angle PQR.

4-The following diagram shows triangle ABC.

AB = 7 cm, BC = 9 cm and $\hat{ABC} = 120^{\circ}$.

- a) Find AC.
- b) Find the area of triangle ABC.

5-The diagram below shows a triangle ABD with AB = 13 cm and AD = 6.5 cm. Let C be a point on the line BD such that BC = AC = 7 cm.

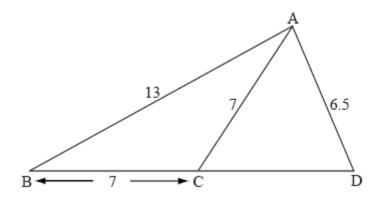



diagram not to scale

- (a) Find the size of angle ACB.
- (b) Find the size of angle CAD.

End of Summer Pack